Formalized Lambek Calculus in Higher Order Logic (HOL4)

نویسنده

  • Chun Tian
چکیده

In this project, a rather complete proof-theoretical formalization of Lambek Calculus (non-associative with arbitrary extensions) has been ported from Coq proof assistent to HOL4 theorem prover, with some improvements and new theorems. Three deduction systems (Syntactic Calculus, Natural Deduction and Sequent Calculus) of Lambek Calculus are defined with many related theorems proved. The equivalance between these systems are formally proved. Finally, a formalization of Sequent Calculus proofs (where Coq has built-in supports) has been designed and implemented in HOL4. Some basic results including the subformula properties of the so-called “cut-free” proofs are formally proved. This work can be considered as the preliminary work towards a language parser based on category grammars which is not multimodal but still has ability to support context-sensitive languages through customized extensions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parsing as Natural Deduction

The logic behind parsers for categorial grammars can be formalized in several different ways. Lambek Calculus (LC) constitutes an example for a natural deduction 1 style parsing method. In natural language processing, the task of a parser usually consists in finding derivations for all different readings of a sentence. The original Lambek Calculus, when it is used as a parser / theorem prover, ...

متن کامل

Formalized Elliptic Curve Cryptography

Formalizing a mathematical theory is a necessary first step to proving the correctness of programs that refer to that theory in their specification. This paper demonstrates how the mathematical theory of elliptic curves and their application to cryptography can be formalized in higher order logic. This formal development is mechanized using the HOL4 theorem prover, resulting in a collection of ...

متن کامل

Ambiguity, Neutrality, and Coordination in Higher-Order Grammar

We show that the standard account of neutrality and coordination in type-logical grammar is untenable. However, when using as our framework a version of Lambek’s categorical grammar with a type theory based on Lambek and Scott’s higher order intuitionistic logic (the internal language of a topos) rather than the Lambek calculus, the account can largely be salvaged. Because of the difficulty of ...

متن کامل

Partially Commutative Linear Logic and Lambek Caculus with Product: Natural Deduction, Normalisation, Subformula Property

This article defines and studies a natural deduction system for partially commutative intuitionistic multiplicative linear logic, that is a combination of intuitionistic commutative linear logic with the Lambek calculus, which is noncommutative, and was first introduced as a sequent calculus by de Groote. In this logic, the hypotheses are endowed with a series-parallel partial order: the parall...

متن کامل

Models for the Lambek Calculus

We prove that the Lambek calculus is complete w.r.t. L-models, i.e., free semigroup models. We also prove the completeness w.r.t. relativized relational models over the natural linear order of integers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1705.07318  شماره 

صفحات  -

تاریخ انتشار 2017